The Manufacturing and Energy Challenges

William B. Bonvillian
Director, MIT
Task Force on American Innovation
“American Exceptionalism, American Decline? Research, the Knowledge Economy, and the 21st Century Challenge”
January 23, 2013
MANUFACTURING: Hollowing Out?

- Manufacturing Employment:
 - Down almost 1/3 in a decade

- Investment:
 - Manufacturing fixed capital investment declined (accounting for costs) in the 2000s for the first time since the data has been collected

- Output:
 - Adjusting gov’t data (for foreign component origin and inflationary assumptions in IT and energy sectors), U.S. manufacturing output value declined in the 2000s
 - Decline in 16 of 19 manufacturing sectors

- Productivity:
 - If output lower than assumed, productivity is lower
Sharp Decline in Mfg. Employment, 2000-2010 -- drop so steep that productivity gain can’t explain

Exhibit 16
US manufacturing employment has been shrinking since 1980, but the pace dramatically accelerated after 2000
Manufacturing employment, 1942–2010, 5-year moving average
Millions of jobs

Manufacturing Jobs by Sector (Chart 2-20)

Data from BLS: http://www.bls.gov/iag/tgs/iag31-33.htm
Manufacturing Jobs as a % of the Civilian Workforce (Chart 2-19)

Data from BLS
We have been assuming we have been losing manufacturing jobs because of productivity gains

- But analysis shows **lower output**

- Historically - most recently, tech boom of the 90’s - **productivity gains**, although disruptive initially, **grow more jobs**

- Lower output means “The Great Recession” in manufacturing is **structural, not business cycle**

- The Keynesian macro-economic **stimulus tools we have been applying won’t work well with structural problems.**

- **Requires a Structural strategy not only a macro-economic strategy**

- **Means innovation capability is key**
Manufacturing Remains a Major Sector

- Manufacturing = $1.7 Trillion of $15T U.S. economy
- Employs 12 million in workforce of 140m
- **Mfg. dominates the U.S. innovation system** – 70% of industrial R&D, 80% of patents, employs 64% of scientists and engineers
- The **currency of international trade is complex high value goods** –
 - 80% of U.S. exports are high value goods (capital goods, industrial supplies, transport goods, medicines)
 - 2012 - $600B deficit in goods
 - Services surplus ($160B) growing gradually but will not offset manufacturing deficit in foreseeable future
 - Services don’t scale; don’t get economies of scale
U.S. Trade Balances for
High-Tech vs. All Manufactured Products, 1988-2008

$ billions

Source: Census Bureau, Foreign Trade Division
High-tech Trade Balance – U.S., Asia, China, & Japan (Chart 2-17)

High-tech trade balance: billions of dollars

Data from NSF Figure O-34
Declining U.S. Share of High-Tech Exports
(Chart 2-18)

Data from NSF Figure O-30
Underlying Issue: Our “Innovate here/Produce Here” Assumption

- Since WWII - **U.S. economy organized around leading the world in technology advance.**
- US led all but one of the innovation waves of the 20th century -
 - growth economics: technological & related innovation = 60%+ of growth
 - Led - aviation, electronics, nuclear power, computing, the internet, biotech
 - If your organize your economy on leading technology advances, missing an innovation wave is serious

- **Our operating assumption** - WE would innovate here and WE would translate those innovations into products
 - Would realize the full range of economic gains from innovation at all stages
 - It worked – world’s richest economy
“Innovate here/Produce here” Bonds Breaking?

- With global economy, assumption of “innovate here/produce here” no longer holds.
 - In some industrial sectors, can now sever R&D and design from production
 - **RISK -> innovate Here/Produce There**

- Last 25 years -
 - **Distributed Manufacturing** – with IT based specs - in some sectors
 - But **other sectors** still require deep connection between R&D and production
Risk -> “Innovate There/Produce There”

- IT goods can sever R&D/design & production
 - Electro-mechanical-aero-pharma-capital goods– tie R&D/production– variables too complex

RISK → “Innovate There/Produce There”

Underlying all this: Competing with low cost/wage high tech competitors: must have production productivity gains

That means new innovation req’d: new technology and processes

That means an advanced mfg. R&D agenda
Behind it all: Understanding the Hourglass --

<---- Resources, Suppliers, Components, Innovation

<---- Production (12m jobs)

<---- Distribution, Sales, Life Cycle
An Energy Innovation Wave? -
-Underlying ISSUE

- The scale of technology investment …
US Public and Private Trends in Energy R&D

U.S. Energy R&D Spending vs. Price of Crude Oil

US Energy Budget vs. the Price of Crude Oil

Chart 3-5

Federal investment in energy R&D and other non-defense R&D

 Millions of dollars

Energy R&D

Other non-defense R&D

“Energy” includes Energy (270) plus DOE portion of General Science (251) budget functions. Actual dollars, not adjusted for inflation.
US Private Energy Sector R&D Investment Compared to that in Sectors with Significant Innovation:

Innovating industries -
- The biotech industry invests 39% of annual revenue,
- pharmaceuticals invest 18%,
- semiconductors invest 16%.

Established industries:
- electronics industry invests 8% of sales
- auto industry invests 3.3%.
- all U.S. industry average: 2.6%
- **Energy Sector** – below 1% (‘88-’03 – Nemet & Kammen ‘07)
Chart 3-6
Top ten nations in terms of clean energy investment (2010)

- **China**: $54.4 billion
- **Germany**: $41.2 billion
- **United States**: $34.0 billion
- **Italy**: $13.9 billion
- **Rest of EU-27**: $13.4 billion
- **Brazil**: $7.6 billion
- **Canada**: $5.6 billion
- **Spain**: $4.9 billion
- **France**: $4.0 billion
- **India**: $4.0 billion

Energy as an Innovation Wave:

- Energy –
- If it is the next innovation wave, are we making the investments we need to make to lead it?